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ABSTRACT

A large number of studies have been maae concerning the sheet
forming problem, however most of them use phenomenological theories,
and only few authors have used the constitutive behavior resulting from
texture hardening and microscopic hardening to characterize the sheet
formability. These latter studies, however, usually assume that ths
texture does not develop during the fcrming operation, and that the grairs
are equiaxed.

The classical Marciniak-Kuczynski (Defect) theory, which consists
in calculating the behavior of an initial defect in the sheet, in the form of
a thin groove, is here applied together with a full-constraints or
relaxed-constraints theory of polycrvstal viscoplasticity. The purpose of
this is to Iinvestigaie the effect of the induced texture on the Forming
Limit Diagram (F!.D), and the effect of grain shape as well.

An aiternative fast way of deriving F.L.D.'s is also proposed using a
perturbation method. Com,./isons are made between the results obtained
by both Defect and Perturbatinn theories, in the case of ideal f.c.c. rolling
texture components, and in the case of polycrystals.



INTRCDUCTION

The sheet forming process carries a great industrial interest in as much as a
better simulation of that opera:ion can help avoiding material waste due mainly to flow
inhomogeneities that affect the surface aspect and may also induce ears.

The tool used by engineers to characterize the expected ductility in the
forming process is the Forming Limit Diagram. One way or deriving experimeniaily
this diagram is to perform a series of tests on the same initial material on which a given
loading path is imposed, and recording the critical strain at which failure occurs or at
which a given strain gradient appears. Despite the fact that earing induces non-zero
shear strains, all F.L.D. are represented only in a two-dimensional strain plot. Most of
the authors dealing with that subject, and trying to reproduce those figures have used
phenomenological relations to describe the material behavior. Only in the last decade,
some authors considered using the information given by the texture and the
microscopic behavior to represent the anisotropy responsible in part of the flow
instabilities; among them, P.Bate [1], F.Barlat[2], R.J.Asaro and A.Needleman[3] and
Kocks et al.[4). The theoretical way used by these authors to treat this problem is the
following. Tne material will promote a flow localization in the form of a groove having a
small height and a srnall thickness compared to its length (Fig.1). At any time, this
groove must fulfill three conditions:

(honn) Cm(hona)B
(hopy)Cm(honB (1)
DyCmDy B
where (n, t, 3) are the groove axes, o is the local Cauchy stress tensor, D the local
strain rate tensor, and h the current local sheet thickness. The pirpose of the Defect
Theory used by these authors is to create an initial groove at a given initia! angle by
artificially setting a thickness difference of given size ( that can, tor instancs, represent
the surface roughness of the st.eet), and see how this defect evoives by applying to it
at any strain the equations (1). Further real.stic simplifications are also made:
O33=0 (2)
i.e. plane stress, and no triaxial effects due a sharp localization, i.e. a long wavelength
approximation. It is also assumed that the strain path is known in the bulk, i.e.:
p=(D22/D1 4 )B-given (3)

An arbitrary decision is usually made concerning the definition of the critical
strain at which unbounded localization is considered to take place. The crit.cal groove
angle is the one leading to the minimum localization strain.

The purpose of the present work is to use the flow behavior of a viscoplasiic
polycrystalline material predicted by a texture model, to construct F.L.D.'s. Two



approaches will be used: Defect and Perturbation theories. Texture and grain shape
effects will be investigated.

The next section will be devoted to the relation between the single crystal and the
polycrystal behaviors.

SINGLE CRYSTAL vs POLYCRYSTAL BEHAVIOR

A single crystal is assumed to daform plastically on well defined slip systems s
characterized by their slip plane gs. and their slip direction _95. When a deviatoric stress
S is applied to the single crystal, the slip system will glide at a microscopic shearing

rate ¥° so that:

PedolmS S o)™ (4)
where Y, and t,° are respectively the reference shear strain rate and the reference
stress associated to .l. The parameter m' is the inverse of the rate-sensitivity facior. The
tensor S is defined as:

msij:bsins‘ (5)
and the product QS:S is the resolved shear stress on slip system s. Summation will be
assumed when the, indices are repeated on the same side of the equations. The
symbol : here stands for the double contracted product of tensors. Under such a stress
state, the single crystal will induce a strain rate tensor (normalized by the reference
shear rate):

DU-(1/2)25(msij+msji)(msk|sk|/tos)m' (6)

When the five independent ccmponents of D are applied, the set of non-linear
equations (6) can be inverted by a Newton-Raphson method, since the existence of a
convex viscoplastic potential ensures unicity of the solution. Divergence is prevented
by rescaling the strees correction whenever it is necessary, i.8. when the siress tensor
generates too large resolved stresses. This method has proved to be very efficient and
safe.
| First, theTaylor (Full Constraints, FC) assumption is made, namely:

D-D @)
i.e. uniformity of the str~in rate throughout the polycrystal. Knowing the macroscopic
strain rate, it is possible to invert equations (6) for each grain and average out the
stress over the sample volume:

S=<1(9)$(g)> (8)
where g represents a grain orientation, f(g) the volume fraction of grains having same
orientation as grain g, and the symbol <> represants a volume average. When the
Relaxed Constraints (RC) assumption is made, equ.(6) are inverted only in the
subspace of the imposed strain components, keeping the complementary imposed
stresses constant. The orientation changes responsible for the induced texture are
ca'culated with a method due to Honneff and Mecking [5], and used by Canova [6) and



Canova st al.[7], which relies on the fact that the sheet plane and major principal
straining direction are considered as fixed in space, throughout the maiarial.

Other informations are needed for the instability problem, namely the
macroscopic hardening and the macroscopic viscosity tensors. They can be obtained
as follows: a (space or time) variation in strain rate can be associated with an
orientation change, a strass change and a change in the set of reference shear
strasses. This can be expressed as:

dD,lzf.sts (ts/‘tos)m ~

+m zsns (151 S)M™ 1dRSk|Sk|/t
+m ZSRS Rsk|(‘ts/‘tos)m dSyy/toS
-m zsns,.(rs/zos)m dioSieS  (9)
where ttie tensor RS is the symmetrical part of the tensor m®. This equation is to be
understood in a fixed external frama. The changes in the B_s tensors are associated to
.orientation changes, i.e. to strain increments, and so are changes in the set of
reference stresses. It will be demonstrated in Appendix A that they can be written as:
dRS}j=US;jxdey
and (10)
dts -Vsk|d6k|

so that equ.(9) can be expressed as:
dOjjmZgUSijii(r%/75g )mdekl
+m zsns, (1S/1oS)M" ‘usmnk,smndek,/rso
+m'TR iﬂsm(‘ts/‘t s)m’- dsk}/ts
-m'ZgRS l(ts/tos)"‘ V8 dewyte® (1)
which can be separated into terms depending on de and a term depending on JS:

dDj=n Sy - Hjaden (12)
where 7 represents a visoosity i.e. the instantaneous strass change due to a strain rate
change, whereas H is a harJening tensor in which both texture and microscopic
hardening are included The tensor n can, in general, be inverted [8), so that equ.(12)
can be rewritten in the form:

dS;j=nijidO+Hijjdek| (13)

The elasticity is hers entirely neglected, which seems legitimate since the material
reaches large strains and is fuily piasticaily ioaded in the bulk ana in the groove.

Here &gain, when the FC assumption is used, uniformity of dg and dD are
prescribed 80 that the macroscopic 3 and H tensors are obtained by volume averaging
of the local corresponding tensors. When RC conditions are taken, the large flat planes
of the grains usually coincicde with the sheet plane, so that the in-plane strain
components are still prescribed to be uniform, and volume averaging of the n and H
fengors can be safely done in the 3D subspace in \thich the problem is studied.

The analysis does not presume any existence of orthotropy axes. Only the



assumption that the sheet plane is a mirror plane for the texture and therefore for the
anisotropy is used. This implies that the stress subspace (n,S15) is closed [9], i.e. any
strain rate having components in that subspace will induce a stress having zero
components in the complementary subspace; it means, in particular, that there is no
need to look for non-zera components Dy3 and Dp3 to fulfill the equs.(1), since they will
turn out to be zero by symmetry.

It will also be assumed that the microscopic law of work- hardenmg is unique
and independent of the strain path, which is a fairly good approximation according to
Tomé et al.[10]. In this work, a simple Voce law has been taken to describe the
isotropic hardening of the slip systems, which is expressed in differential form:

d1o5=05(T1+T0-T0) ZIdyl/T4 (14)
where 6, is tha initial hardening rate, tq, the current refsrence stress, and 14 is so that
its sum with the initial strass 14, is the saturation stress.

The next section will concern the application of the Defect analysis.

THE DEFECT ANALYSIS

The groove generated artificially is a material line whose angle varies
according to the geometrical relation:

tan(¥)=tan(¥).exp((1-p)E1) (15)
where ¥ and ¥, are respectively the current and initial groove angle (fig.1), Eq the
accumulal )d major strain, and p the bulk strain rate ratio as defined in equ.(3). At each
strain step, the strain rate is adjusted to fulfill the equs.(1), which are then taken as a
set of non-linear equations in Dy, Dy and Dpyy. The critical strain is considered to be
attained when the ratio of equivalent strain rates in the groove and the bulk equals the
arbitrary value of 3. The correct groove angle is the one minimizing the critical strain.
The initial groove angles have been taken from 0° to 90° with increments ot 5°. The
initial defect size is taken as 1% and the rate sensitivity equals 0.02. When the texture
is kept isotropic along a given strain path, and fur a microscopic hardening defined
with:

Too=1.: tq=2.; 6o=10. (16)
the F.L.D. obtained using those data is shown on fig.2. We will restrict th.e application of
Defect Theory to the study of grain shape and induced texture effects.

As explained above, it is possible to gat the limit strains in the case of fiat
graing, by imposing to each grain the stress components:

S43=S23=0. (17)
and deriving the imissing stress components in the subspace wheie the strain rate
components are known. No noticeable differance has been found for the case of
uniaxial and plane strain tension. A significant influence of grain shape appears in the
expansion region, as shown on fig.3. The evolution of the ratio of equivalent strain



rates clearly indicates a loss of ductility due to grain shape effects. This effect has
already been pointed out by Kocks et al.[4]. It is due to the fact that flat grains induce a
vertex at the equibiaxial stretching loading point (fig.4a). The appearance of that vertex
is not an artifact of the RC theory, since even a low interaction self-consistent scheme
[11] does predict such a sharp curvature as shown on fig.4b.

When the texture is left free to deveiop during the strain path, again no
noticeable difference is observed for p=0 . In equibiaxial expansion, the effect of the
induced texture is not severe for the work-hardening described in equs.(16), as can be
seen in fig.5a, but the effact is more pronounced for higher work-harderiing materials
(fig.5b). Although there is here no grain shape effect, the texture induces a change in
the polycrystal yield surface, and particularly a sharper curvature at the loading point .
The increasing ductility ebserved in uniaxial tension when the texture is free to develop
is due to the fact that the FC tension texture exhibits a fairly large texture hardening
due to the strengthaning of the (111) texture component.

The next section will be devoted to an alternative way of deriving F.L.D.'s
namely the Perturbation Theory.

THE PERTURBATION METHOD

The main purpose of the Perturbation Method is to assume a certain additional
inhomageneity in the strain, strain rate and stress fields, see under which condition the
material will alicw such a fl.ictation, and study the development of this perturbation,
particularly whether its size v::il increase or not. This approach is commonly used for
studying the stability of the homogeneous solution of a differantial system of equations,
however, it has not yet been applied to date to the sheet forming problem, except in the
study of Dudzinski and Molinari [13]. The three equs.{1) can also be written as:

d(hopn)/eX =0

d(hopy)/0X =0 (17)

9(Dy)/oX,=0
where the reference system (X, X, X3) is defined in fig.1. For the present problem, we
chose to 'vectorize' the tensors using the Lequeu notation [12]. A rank two symmetrical
tensor ,e.9. Z, has a unique associated 5D vector, Z, so that:

Z4 -233\/3/2

Zow(Zoo-Z4 1IN2

23-223\’2 (18)

Zy=Zy 3\/2

ZemZ, 2\/2
Thig definition anables * . to write:

Opn=-(5'1Y3+S'7)vz2

Ont-S"l)‘/JZ



Dy=(D'2-D'4V3)W2 (19)

dh=hde{V2/3
where the S'; are the vector components of the deviatoric stress tensor in groove axes,
L'; and dg; the vector components of the strain rate and strain increment tensors in
groove axes as well. We assume that the strain field has a variation of the kind:

£=£0+3e™ . exp(At).oxpli(E4 X1 +E2X2)] (20)

=E2+2E(X1)
where A is not known a-priori, and §; characterizes the periodicity of the
inhomogeneity with respect to the X; axes, it is not known a-priori either. 30 is the
homogeneous value of the strain, and a_g' an arbitrary initial amplitude. The exact
definition of the strain is here not important since only strain increments (with time or
space) will be used. When A is found to be negative, the perturbation decays in
magnitude leading to homogeneous stable flow, while a positive value, on the

contrary, leads to the onset of instability. The strain rate field, using equ.(20) will be of
the form:

D=DO%+23e(X.1) (21)
and therefore, the stress increment in the fixed principal strain axes will be:
dSistOi-.-(lnij-l-Hij).aﬁi(x.t) (22)

here the fourth rank tensors n and H have been changed into two index matrices by the
Lequeu transformation. Here d§° is the homogeneous stress increment field which
tumns out to be rero when space variations are taken.

It is possible, then, when substituting the relations (20), (21) and (22) into the
non-linear equations (17), and selecting the first order terms in ag. to rewrite the
differential system, equs.(17) into the form:

(Ajj+ABjj)o€=0 (23)
where:

A1j--(632+855+31\,3)\/2/331 ,-csz-sHsl-H 1j‘/3

Azj-(-332+035)‘/2/381 ]-SH21+CH5j

A3i--31 1(1/\/3)4-032]-0-833]

Bqj=-cngi-sns; Ny V3 (24)

Boj=sn2j+CN5)

83]-0
with:

s=sin(2'¥), c=cos(2Y¥)

It can be seen that, for a non-zero perturbation to exist, it is necessary that the matrix
A+AB be singular which provides a second order algebraic equation in A. The matrix
considered depends notonly on S, n and H but also on the angle ¥. The groove
angle of inte.est is the one providing the maximum positive root A*, since it will be the
most destabilizing one. The corresponding other root is callec! A". It is not rigorous to



consider the flow unstable as soon as A* is positive since the homogeneous solution
in strain is not constant. Instability will in fact occur when A* is significantly positive,
which leaves a degree of arbitrariness in the choice of the critical strain.

This analysis has been firstly applied to idea! rolling texture components. On
figs7a to e are shown the variations of A* and A" for each texture componer® and the
three loading paths (p=-1/2, 0 and 1). On tig.6 are the corresponding F.L.D.'s
compared with the ones obtained by the Defect analysis. The level of A+
corresponding to instability has been chosen so that the critical strain in uniaxial
tension are identical to those found by the Defect theory. It can be seen, on fig.6 that a
good gen:aral agreement is found between the two theories, the largest deviation being
about 3% in equibiaxial expansion for the Cu component. A low ductility is here found
in the expansion region, since only the four orthotropic ideal orientations of each
texture component have been taken, providing therefore vertex effects.

When this analysis is applied to the pnlycrystal case, and the critical strain
defined as previously, the calculated F.L.D shows a perfect agreement in the p<0
region between the two theories (fig.7), but a very large difference appears in the
expansion region. The relatively good agreement obtained with the ideal texture
components may mean that the curvature of the yield surface obtained through n is not
well described. This tensor is positive and symmetrical, and it represents therefore an
ellipsoid which is tangent to the yield surface at the loading point. However, when the
comparison is made between the real local curvature and the one simulated by using
the tensor 1, a good correspondences is fcund.

The Perturbation method, therefore, can not yet be applied safely in expansion,
but seerns to give good results otherwise. It is important to note that the computing time
used by this method is less than 1% of the time spent by the Defect theory, and
therefore may be very useful in the future.
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CONCLUSIONS
The forming ability of a viscoplastic polycrystalline material has been studied
using Taylor (FC) and relaxed-constraints (RC) assumptions to describe the average
behavior. The Defect thecry has been used to investigate particularly the effects of
grain shape and induced texture on the ductility, and a new way of getting F.L.D.'s has
besn proposed by using the Perturbaticn theory.



We found a dramatic grain shape influence on the ductility in expansion, but no
noticeable influence for the casas p=0 to -1/2. This has been attributed to the
appearance of a vertex at the loading point which enables the groove materiai to
deform into a plane strain mode, i.e. to localize.

The effect of the induced texture is shown to be more important the larger the
work-hardening rate, particularly in equibiaxial expansion.

The forming problem has also been investigated by using the Perturbation
theory, which consists into imposing an inhomogeneous strain field and studying
whether the perturbation will persist leading to localization or not. It has the major

advantage of taking less than 1% of the computing time used by the former theory. The
" F.L.D.'s obtained for the ideal rolling texture components do coincide well with the
ones obtained by the Defect theo.y, some small discrepancies appearing in the
expansion case. Very good agreement is also observed in the p<0 region for the
polycrystal case, whereas a very large discrepancy appears in the equibiaxial tension
case. This misfit between theories in that case is not attributed to inaccuracies in the
description of the yield surface curvature, and does not yet :iave a clear explanation.
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Figure 1: Geometry of the sample used Figure 2: F.L.D. obtained for an isotropic
in Dgfecl Theory to study the material polycrystal, having microscopic hardening
ductiiity. . patameters defined in equ.(16).

|
BOU. GRAINE (BASEEY LINE) ,’
|
{

3 FLAT SRAIRS OLIB LINE) L
§" A

LR i a
% i

o sor 004 7-.“ e 010 012 814 el oIe
Zrsi
Figure 3: Equivalent strain rate ratios obtainec or

an isotropic polycrystal in equibiaxial expansion.
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Equ.(6) can be written in the form-

D=X(tS/1,5)™-1(RSxRS):S/1,5 (A-1)
or  Djj=FijkiSki
where the secant tensor F can be calculated when the non-linear equs(6) have been
inverted and S obtained. It is then possible to get the microscopic shearing rates:

PHo=(tS1Se) ™ 1R:F 1.0/ S (A-2)
or: =P5.D
In FC conditions, the total spin is zero so that the lattice spin is the opposite to the
plastic spin calculated as follows:

u)'ij=(1 /Z)E(msij-msji)Psmnm (A-3)

=TijiDrt _

The change in the R* tensors can therefore be written as:

stijsdm‘ikRskj-Rsikdn)‘kj (A-4)
which can be expressed as:

dRSjj=(TikmnR%j-A%KTkjmn)demn (A-5)

=USijdeg|

The micrascopic hardening, when restricted to isotropic hardening of the slip
systoms is written:

drSo=hZ|dy*|=hZogdy® (A-6)

=i ZosPS:de=VS.de

where h is the hardening rate defired in equ.(14), and oS the sign ot dyS.
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the fotrving process, for three levels of microscopic hardening.

Figure 6: Critical strains ohtained on some
rolling texture components by the two theories.
Note the good correspondance for p<0, and the
relatively good qualitative agresment for p>0.

Figure 7: F.L.D's obtained on an isotropic polycrystal
using both theories. The agreement is good for p<0 but
rather poor in expansion.



